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Brownian rotation of classical spins: dynamical equations
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Abstract. Dynamical equations for a classical spin interacting with the surrounding medium are derived by
means of the formalism of the oscillator-bath environment. The bilinear-coupling treatment of Jayannavar
(Z. Phys. B 82, 153 (1991)) is extended to couplings that depend arbitrarily on the spin variables and are
linear or linear-plus-quadratic in the environment dynamical variables. The dynamical equations obtained
have the structure of generalised Langevin equations, which, in the Markovian approach, formally reduce
to known semi-phenomenological equations of motion for classical magnetic moments. Specifically, the
generalisation of the stochastic Landau–Lifshitz equation effected by Garanin, Ishchenko, and Panina
(Theor. Math. Phys. 82, 169 (1990)) in order to incorporate fluctuations of the magnetic anisotropy of the
spin, is obtained for spin-environment interactions including up to quadratic terms in the spin variables. On
the other hand, the portion of the coupling quadratic in the environment variables introduces an explicit
dependence of the effective damping coefficients on the temperature.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
76.20.+q General theory of resonances and relaxations – 75.50.Tt Fine-particle systems

1 Introduction

The phenomenon of spin relaxation plays a significant rôle
in condensed matter systems. Due to the interaction of a
spin with the surrounding medium (phonons, conducting
electrons, nuclear spins, etc.) its dynamics is quite com-
plicated. The complexity itself, however, allows an ide-
alisation of the phenomenon, by replacing the effect of
the environment by a magnetic field randomly varying in
time. Nevertheless, in order to describe the environmen-
tal effects properly and to attain a thermodynamically
consistent description, the fluctuating terms must be sup-
plemented with the analogue of a relaxation (damping or
dissipative) term, to which must be linked by fluctuation-
dissipation relations.

1.1 Phenomenological equations

For classical spins, the aforementioned program was car-
ried out by Brown [1], in order to model the thermally
activated rotation of the magnetic moment of a nanomet-
ric particle over the magnetic-anisotropy potential barri-
ers (Néel rotation). This solid-state relaxation process was
described by augmenting the phenomenological equation
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of Gilbert, which already embodied a damping term, by a
fluctuating field bfl(t) in the following way

dS
dt

= γS ∧
[
Beff + bfl(t)− (γS)−1λ

dS
dt

]
. (1)

Here λ is a dimensionless damping coefficient and Beff =
−∂HS/∂S is the (deterministic) effective field associated
with the Hamiltonian of the spin HS(S). This typically
includes Zeeman and magnetic-anisotropy energy terms,
e.g., HS = −S · B − 1

2β(S · n)2 for uniaxial anisotropy
with symmetry axis n, whence Beff = B + K̂S, where K̂
is a second-rank tensor with elements Kij = βninj.

Equation (1), which was independently introduced
by Kubo and Hashitsume [2], can be solved for dS/dt
and cast into the archetypal Landau–Lifshitz form, and
vice versa. However, we shall name the stochastic
Landau–Lifshitz equation to its λ� 1 form (|bfl| ∼ λ1/2)

dS
dt

= γS ∧ [Beff + bfl(t)]− λ γ
S

S ∧ (S ∧Beff) , (2)

since, in accordance with the spirit of its original deter-
ministic counterpart [3], it describes weakly damped pre-
cession. Besides, except for a global time scale renormal-
isation, the average quantities derived from equation (1)
are equivalent [4] to those associated with equation (2),
which was indeed the equation thoroughly studied by
Kubo and Hashitsume.
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On assuming that bfl(t) is Gaussian-distributed, cen-
tred (zero-mean), isotropic, and delta-correlated in time,
Brown derived the Fokker–Planck (diffusion) equation
governing the time evolution of the non-equilibrium prob-
ability distribution of spin orientations. By imposing that
the Boltzmann distribution P0(S) ∝ exp[−HS(S)/kBT ]
is a stationary solution of that Fokker–Planck equa-
tion, the amplitude (variance) of bfl(t) was determined
in terms of λ and T (this ensures the thermodynamic
consistency of the approach). By a different method
Kubo and Hashitsume arrived at an equation for the
probability distribution, which, when the auto-correlation
times of bfl(t) are much shorter than the precession period
of S, coincides with the Fokker–Planck equation of Brown
in the absence of anisotropy potential (they considered the
case HS = −S ·B).

The Brown–Kubo–Hashitsume stochastic model has
been the basis of significant studies of the dynamics of
classical magnetic moments (see, e.g., Refs. [5–11], to cite
but a few). Nonetheless, there exist important microscopic
relaxation mechanisms that cannot be accommodated in
the context of this model, inasmuch as they do not produce
a field-type perturbation on the spin (“field-type” fluctu-
ations). An important example is the coupling of the spin
to the lattice vibrations, which modulate the crystal-field
and the exchange and dipole-dipole interactions, and can
produce fluctuations of the magnetic-anisotropy potential
of the spin (“anisotropy-type” fluctuations).

In order to take into account this phenomenon,
Garanin, Ishchenko, and Panina [12] generalised the above
Langevin equations to dS/dt = γS∧ [Beff +b(t)+ k̂(t)S]−
R. Here, R is a relaxation term to be determined and, in
analogy with the expression Beff = B + K̂S for the ef-
fective field, b(t) is a stochastic vector that introduces
the field-type part of the thermal fluctuations, while k̂(t)
is a stochastic second-rank tensor, so k̂(t)S incorporates
anisotropy-type fluctuations into the dynamical equation.

On assuming the correlation properties

〈bi(t)bj(s)〉 =
2λij
γS

kBTδ(t−s),

〈bi(t)kjk(s)〉 =
2λi,jk
γS

kBTδ(t−s), (3)

〈kik(t)kj`(s)〉 =
2λik,j`
γS

kBTδ(t−s),

the associated Fokker–Planck equation was constructed
[12]. The relaxation term R was then determined by
merely assuming that the Boltzmann distribution is a sta-
tionary solution of their Fokker–Planck equation, getting
(cf. Eq. (2))

dS
dt

= γS ∧
[
Beff + b(t) + k̂(t)S

]
− γ

S
S ∧ Ĝ (S ∧Beff) ,

(4)

where Ĝ is a symmetrical second-rank tensor related with
the correlation coefficients of the fluctuating terms by

Gij = λij +
∑
k

(λi,jk + λj,ik)Sk +
∑
k`

λik,j`SkS`. (5)

For an arbitrary form of Ĝ, the relaxation term
in equation (4) deviates from the form proposed by
Landau and Lifshitz. Only for Gij = λδij , which for in-
stance occurs when both the field-type and the anisotropy-
type fluctuations are isotropic (λij ∝ δij and λik,j` ∝
δijδk`) and there is not interference between them (λi,jk ≡
0), that archetypal relaxation term is recovered and
the Fokker–Planck equation of Garanin, Ishchenko, and
Panina reduces to that obtained by Brown.

1.2 Dynamical approaches to the phenomenological
equations

There have been several attempts to justify, starting from
dynamical descriptions of a spin coupled to its surround-
ings, phenomenological equations for the stochastic spin
dynamics.

Smith and De Rozario [13] considered a classical mag-
netic moment S coupled to a field b(P,Q) depending on
the canonical momenta and coordinates (P,Q) of the en-
vironment. They derived a master equation for S by “pro-
jecting out” the environment variables, which, when the
modulation due to the surroundings is fast in comparison
with the precession period of S, reduces to the Fokker–
Planck equation associated with equation (2).

Seshadri and Lindenberg [14] studied a test spin in-
teracting through a Heisenberg-type Hamiltonian with
an environment consisting of other spins. The interaction
among the latter was treated by a mean field approach,
and a dynamical equation for the test spin was obtained
to second order in the spin-environment coupling. The
equation derived has the form of a generalised (i.e., con-
taining “memory” terms) Langevin equation, whose fluc-
tuating and relaxation terms naturally obey fluctuation-
dissipation relations.

Jayannavar [15] employed the oscillator-bath represen-
tation of the environment [16–20], and assumed a coupling
linear in both the spin variables and the oscillator coor-
dinates (bilinear coupling). A generalised Langevin equa-
tion for the spin was derived, which, in the Markovian
approach (no memory) and for isotropic fluctuations, for-
mally reduces to the stochastic Gilbert equation (1). (A
similar treatment was presented in Ref. [21].) Equations of
Landau–Lifshitz form, akin to those derived by Seshadri
and Lindenberg, were also obtained in the weak-coupling
regime.

Nevertheless, since spin-environment interactions lin-
ear in S produce a field-type perturbation on the spin (see
below), the treatments mentioned do not account for fluc-
tuations of the magnetic anisotropy of the spin. In this
article, in order to incorporate this phenomenon, we shall
extend the bilinear-coupling treatment of Jayannavar by
considering general dependences of the spin-environment
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coupling on the spin variables. Furthermore, we shall also
include interactions quadratic in the oscillator variables
(the classical analogue of, e.g., two-phonon or two-photon
relaxation processes), which are essential at sufficiently
high temperatures. Because the ordinary formalism of the
environment of independent oscillators [16–20] is not di-
rectly applicable when such quadratic couplings are in-
cluded, we shall resort to a perturbational expansion in
the spin-environment coupling, which is inspired on that
of Cortés, West, and Lindenberg [22].

We shall obtain dynamical equations for the spin that
have the structure of generalised Langevin equations with
fluctuating terms γS ∧ bfl(S, t) and concomitant relax-
ation terms. These will have the form of a vector product
of S(t) with a memory integral, which includes (dS/dt)(s)
or (S ∧ Beff)(s) for weak coupling, taken along the past
history (s ≤ t) of the spin. In the Markovian approach,
the equations derived will reduce to the form dS/dt =
γS ∧ [Beff + bfl(S, t)] − R, where for couplings linear
in the environmental variables the relaxation term reads
R = 1

SS ∧ Λ̂(L)(dS/dt) or R = γ
SS ∧ Λ̂(L)(S ∧ Beff) for

weak coupling, Λ̂(L) being a second-rank tensor depend-
ing on the structure of the coupling. In addition, when
interactions quadratic in the environment variables are
also accounted for, the relaxation term will depend ex-
plicitly on the temperature and, in the Markovian ap-
proach, R will take the form R = γ

SS∧ Λ̂(S∧Beff), where
Λ̂ = Λ̂(L) + kBT Λ̂

(Q) and the additional tensor Λ̂(Q) is de-
termined by the quadratic portion of the coupling.

Since the fluctuating effective field bfl(S, t) will depend
in general on S, it can incorporate fluctuations of the mag-
netic anisotropy of the spin. For instance, when the spin-
environment interaction includes terms up to quadratic in
the spin variables, bfl(S, t) can be written as b(t) + k̂(t)S,
with the correlation coefficients of the fluctuating terms
being related to the tensors Λ̂ by expressions identical with
equation (5). In this way, the generalisation of the clas-
sic Brown–Kubo–Hashitsume model effected by Garanin,
Ishchenko, and Panina will formally be obtained.

2 Free dynamics and canonical variables

The dynamical equation for an isolated classical spin with
Hamiltonian HS(S) is

dS
dt

= γS ∧Beff , Beff = −∂HS

∂S
· (6)

These vectorial equations, which merely express the pre-
cession of S about the instantaneous effective field, can be
written as

dϕ
dt

= − γ
S

1
sinϑ

∂HS

∂ϑ
,

dϑ
dt

=
γ

S

1
sinϑ

∂HS

∂ϕ
,

where ϕ and ϑ are, respectively, the azimuthal and polar
angles of S. Furthermore, these formulae are equivalent to
the Hamilton equations

dq
dt

=
∂HS

∂p
,

dp
dt

= −∂HS

∂q
,

with the conjugate canonical variables1

q = ϕ, p = Sz/γ. (7)

In terms of these variables S is given by

Sx =
√
S2 − (γp)2 cos q,

Sy =
√
S2 − (γp)2 sin q, (8)

Sz = γp,

from which one can readily obtain the customary Poisson-
bracket (“commutation”) relations among the spin vari-
ables:

{
Si, Sj

}
= γ

∑
k εijkSk, where εijk is the Levi–

Civita symbol and the Poisson bracket is defined as{
A,B

}
≡ [(∂A/∂q)(∂B/∂p)− (∂A/∂p)(∂B/∂q)]. In addi-

tion, on using the chain rule of the Poisson bracket (i.e.,{
f, g
}

=
∑
i,k

∂f
∂xi

∂g
∂xk

{
xi, xk

}
, where xi = xi(p, q)) one

gets the useful relation (cf. Eq. (13) of Ref. [13]){
Si, V (S)

}
= −γ

(
S ∧ ∂V

∂S

)
i

, (9)

which is valid for any function of the spin variables
V (S). Naturally, one can conversely postulate the relations{
Si, Sj

}
= γ

∑
k εijkSk and then derive at equation (6)

starting from the basic Hamiltonian evolution equation
dSi/dt =

{
Si,HS

}
and using equation (9).

3 Dynamical equations for couplings linear
in the environment variables

In this section we shall study a classical spin surrounded
by an environment that can be represented by a set of in-
dependent classical harmonic oscillators. These may cor-
respond to the normal modes of an electromagnetic field,
the lattice vibrations (in the harmonic approximation),
or they can be an effective low-energy description of a
more general surrounding medium [19]. We shall assume
that the spin-environment interaction is linear in the co-
ordinates of the oscillators but otherwise arbitrary in the
spin variables. In this way, fluctuations of the magnetic
anisotropy of the spin will be incorporated in the dynam-
ical equations.

3.1 The spin-environment Hamiltonian: couplings
linear in the environment variables

The total system consisting of the spin (the “system of in-
terest”) plus the oscillators representing the environment
forms a closed dynamical system that we shall describe by
augmenting the isolated-spin Hamiltonian as follows

H = HS(S) +
∑
α

1
2

{
P 2
α + ω2

α

[
Qα +

ε

ω2
α

Fα(S)
]2}

. (10)

1 The alternative choice q̃ = Sz/γ and p̃ = −ϕ of, e.g., refer-
ence [23] is equivalent to the one considered here through the
canonical transformation q = −p̃ and p = q̃.
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Here, α is an oscillator index (e.g., the pair (k, s) formed
by the wave-vector and branch index of a normal mode of
the environment), and the coupling terms Fα(S) are ar-
bitrary functions of the spin variables (typically polyno-
mials in S). These terms may depend on the parameters
of the oscillators ωα, but not on their dynamical variables
Pα, Qα. On the other hand, for the sake of convenience in
keeping track of the various orders, we have introduced a
spin-environment coupling constant ε, which in the weak-
coupling approximation will be considered small.

The terms proportional to F 2
α, which emerge when

squaring Qα + (ε/ω2
α)Fα, are “counter-terms” introduced

to balance the coupling-induced renormalisation of the
Hamiltonian of the spin. The formalism takes as previ-
ously considered whether such a renormalisation actually
occurs for a given interaction [19], so that HS would al-
ready include it (whenever exists). An advantage of this
convention is that one deals with the experimentally acces-
sible energy of the spin, instead of the “bare” one, which
might be difficult to determine.

The introduction of non-linear coupling terms Fα(S),
as otherwise occur in various relevant situations (Fα ∝∑
SkS` for the magneto-elastic coupling of S to the lat-

tice vibrations), will be essential to get fluctuations of the
magnetic anisotropy of the spin. The starting Hamilto-
nian in the work of Jayannavar [15] was similar to (10)
but with a special type of linear Fα(S): the component Si
of the magnetic moment was coupled to the ith Cartesian
component Qα,i of certain three-dimensional oscillators.
This specific bilinear interaction yielded, not only field-
type fluctuations, but also uncorrelated ones. (In Ref. [21]
couplings non-linear in S were also considered, but in that
work the focus was on the existence of thermal equilibrium
in the Markovian limit.)

3.2 Dynamical equations: general case

For the sake of simplicity in notation but also of generality,
we cast the Hamiltonian (10) into the form

H = H(m)
S (p, q) +

∑
α

1
2
(
P 2
α + ω2

αQ
2
α

)
+ ε

∑
α

QαFα(p, q),

(11)

where q and p are the canonical coordinate and conjugate
momentum of a “system” with Hamiltonian HS(p, q) (in
the spin-dynamics case p and q are given by Eqs. (7)), and
the “modified” system HamiltonianH(m)

S augmentsHS by
the aforementioned counter-terms

H(m)
S = HS +

ε2

2

∑
α

F 2
α

ω2
α

· (12)

The equation of motion for any dynamical variable
without explicit dependence on the time, C(p, q;P,Q),
where (P,Q) stands for the set of canonical variables of
the environment, is given by the basic Hamiltonian evolu-
tion equation dC/dt =

{
C,H

}
, where the whole Poisson

bracket is given by

{
A,B

}
≡ ∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
+
∑
α

∂A

∂Qα

∂B

∂Pα
− ∂A

∂Pα

∂B

∂Qα
·

One therefore gets from the Hamiltonian (11) the follow-
ing coupled equations of motion for any dynamical variable
(observable) of the system A(p, q) and the environment
variables (C = A,Pα, and Qα)

dA
dt

=
{
A,H(m)

S

}
+ ε

∑
α

Qα
{
A,Fα

}
, (13)

dQα
dt

= Pα,
dPα
dt

= −ω2
αQα − εFα. (14)

The goal is to derive a dynamical equation for A(p, q)
involving the system variables only (reduced dynamical
equation). Then, the corresponding equation for the spin
will be obtained by replacing A(p, q) in that equation by
the Cartesian components of S (Eq. (8)).

On considering that in equations (14) the term
−εFα(t) = −εFα[p(t), q(t)] plays the rôle of a time-
dependent forcing on the oscillators, those equations can
be explicitly integrated, yielding

Qα(t) = Qh
α(t)− ε

ωα

∫ t

t0

ds sin[ωα(t−s)]Fα(s), (15)

where

Qh
α(t) = Qα(t0) cos[ωα(t− t0)] +

Pα(t0)
ωα

sin[ωα(t− t0)],

(16)

are the solutions of the homogeneous system of equa-
tions for the oscillators in the absence of the system-
environment interaction (proper modes of the environ-
ment). Then, on integrating by parts in equation (15)
one gets for the combination εQα that appears in equa-
tion (13)

εQα(t) = fα(t)− [Kα(t−s)Fα(s)]s=ts=t0

+
∫ t

t0

dsKα(t−s)dFα
dt

(s), (17)

where

fα(t) = εQh
α(t), Kα(τ) =

ε2

ω2
α

cos(ωατ). (18)

Next, in order to eliminate the environment vari-
ables from the equation for A(p, q), one substitutes
equation (17) back into equation (13). This yields a term∑
α

{
A,Fα

}
Kα(t − t0)Fα(t0) that depends on the ini-

tial state of the system (p(t0), q(t0)) and produces a
transient response that can be ignored in the long-time
dynamics (we shall however return to this question
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below)2. The parallel term −
∑
α

{
A,Fα

}
Kα(0)Fα(t),

which is derivable from a Hamiltonian, is exactly
balanced by the term originated from the counter-
terms in

{
A,H(m)

S

}
. This can be shown by using

−
∑
α

{
A,Fα

}
Kα(0)Fα =

{
A,− 1

2

∑
αKα(0)F 2

α

}
, which

follows from the product rule
{
A,BC

}
=
{
A,B

}
C +{

A,C
}
B of the Poisson bracket, and then accounting for

Kα(0) = ε2/ω2
α (see Eq. (18)).

Therefore, one is finally left with the reduced dynami-
cal equation

dA
dt

=
{
A,HS

}
+
∑
α

{
A,Fα

}[
fα(t) +

∫ t

t0

dsKα(t−s)dFα
dt

(s)
]
, (19)

where the first term yields the free (conservative) time evo-
lution of the system, whereas the second term incorporates
the effects of the interaction of the system with its envi-
ronment. The terms fα(t) are customarily interpreted as
fluctuating “forces” (or “fields”), while the integral term,
which keeps in general memory of the previous history of
the system, provides the relaxation due to the interaction
with the surrounding medium3.

The origin of both types of terms can be traced back
as follows. Recall that in equation (15) the time evolu-
tion of the oscillators has formally been written as if they
were driven by (time-dependent) forces −εFα[p(s), q(s)]
depending on the state of the system. Therefore, Qα(t)
consists of the sum of the proper (free) mode Qh

α(t) and
the driven-type term, which naturally depends on the
“forcing” (state of the system) at previous times. Then,
the replacement of Qα in the equation for the system vari-
ables by the driven-oscillator solution incorporates:
(i) The time-dependent modulation due to the proper

modes of the environment.
(ii) The “back-reaction” on the system of its preceding ac-

tion on the surrounding medium.
Thus, the formalism leads to a description in terms of
a reduced number of dynamical variables at the expense
of both explicitly time-dependent (fluctuating) terms and
history-dependent (relaxation) terms.

Archetypal example: Brownian particle

In order to particularise these general expressions to def-
inite situations, the structure of the coupling terms Fα

2 In the ordinary independent oscillator model, one consid-
ers Fα(p, q) ∝ q and the corresponding terms can formally be
removed from the dynamical equations by choosing the ori-
gin of the “coordinate frame” to lay at the “position” of the
system at t = t0, that is, Fα(t0) ∝ q(t0) = 0. However, this
frame-dependent procedure cannot be employed if the system
comprises different entities. In addition, in the spin-dynamics
case with, e.g., Fα(S) linear in S, one cannot set S(t0) = 0 due
to the conservation of the length of the spin.

3 Note that without the integration by parts yielding
equation (17), the Hamiltonian (renormalisation) terms would
occur inconveniently mixed in the integral term.

needs to be specified. For instance, on setting Fα(p, q) =
−Cαq (bilinear coupling), where the Cα = Cα(ωα) are cou-
pling constants, and writing down equation (19) for A = q
and A = p, one gets the celebrated generalised Langevin
equation for a “Brownian” particle [18]

dq
dt

=
∂HS

∂p
,

dp
dt

= −∂HS

∂q
+ f(t)−

∫ t

t0

dsK(t−s)dq
dt

(s).

(20)

Here, f(t) =
∑
α Cαfα(t) is the fluctuating force and

K(τ) =
∑
α C

2
αKα(τ) is the memory kernel, the relaxation

term associated with which comprises minus the velocity
−(dq/dt)(s) of the particle (viscous damping).

In general, when
{
A,Fα

}
in equation (19) is not con-

stant, the fluctuating terms fα(t) enter multiplying the
system variables (multiplicative fluctuations). In this ex-
ample, owing to

{
q,−Cαq

}
= 0 and

{
p,−Cαq

}
= Cα, the

fluctuations are additive.

3.3 Dynamical equations: the spin-dynamics case

Let us now particularise the above results to the dynamics
of a classical spin. Here, we introduce the coupling func-
tions

Fα(S) =
∑
l

C
l
αVl(S), (21)

where l stands for a general index depending on the type of
interaction, the coefficients Clα are spin-environment cou-
pling constants, and the terms Vl(S) are certain functions
of the spin variables. In order to motivate this expres-
sion, consider, e.g., the magneto-elastic coupling of S to
the lattice vibrations. The index l then stands for a pair
of Cartesian indices (ij) and Vl → Vij =

∑
k` aij,k`SkS`,

where the aij,k` are magneto-elastic coefficients.
In order to derive the reduced dynamical equation

for the spin, we merely put A = Si, i = x, y, z, in
equation (19), and then use equation (9) to calculate the
Poisson brackets required. On gathering the results so-
obtained in vectorial form and using Beff = −∂HS/∂S
and dVl′/dt = (∂Vl′/∂S) · (dS/dt), we arrive at

dS
dt

= γS ∧
{

Beff + bfl(S, t)

−
∫ t

t0

ds Γ̂ (L)(S; t, s)
dS
dt

(s)
}
. (22)

In this equation the fluctuating magnetic field is given by

bfl(S, t) = −
∑
l

fl(t)
∂Vl
∂S

, (23)

which involves the environmental proper modes via the
fluctuating sources

fl(t) = ε
∑
α

C
l
αQ

h
α(t). (24)
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On the other hand, the relaxation tensor in equation (22)
reads4

Γ̂ (L)(S; t, s) =
∑
l,l′

Kll′(t− s)
∂Vl
∂S

(t)
∂Vl′

∂S
(s), (25)

where the memory kernel is given by

Kll′(τ) = ε2
∑
α

C
l
αC

l′
α

ω2
α

cos(ωατ). (26)

Equation (22) contains dS/dt on its right-hand side,
so it will be referred to as a Gilbert-type equation (cf.
Eq. (1)). For ε � 1, on substituting perturbatively that
derivative by its conservative part, dS/dt ' γS∧Beff , one
gets the weak-coupling Landau–Lifshitz-type equation

dS
dt

= γS ∧ [Beff + bfl(S, t)]

− γS ∧
{∫ t

t0

ds γΓ̂ (L)(S; t, s) (S ∧Beff) (s)
}
, (27)

which describes weakly damped precession.
For spin-environment interactions linear in the en-

vironment variables but being otherwise arbitrary func-
tions of S, equations (22, 27) are the desired reduced dy-
namical equations for the spin. They have the structure
of generalised Langevin equations with fluctuating terms
γS ∧ bfl(S, t) (associated with the modulation by the
proper modes of the environment) and history-dependent
relaxation terms (corresponding to the back-reaction
on the spin of its previous action on the surrounding
medium).

Note that fl(t) (Eq. (24)) is a sum of a large number
of sinusoidal terms with different frequencies and phases;
this can give to fl(t) the form of a highly irregular function
of t that is expected for a fluctuating term. However, for
a general form of the coupling functions Vl(S), the term
bfl(S, t) cannot be interpreted as a fluctuating ordinary
field, since it may depend on S, but it is rather a fluctuat-
ing effective field to be added to the deterministic effective
field Beff = −∂HS/∂S (Eq. (6)). This can be illustrated
by phrasing the discussion in terms of the fluctuating part
of the energy of the spin, namely (see Hamiltonian (11)):
Hfl = ε

∑
αQ

h
α(t)Fα(S). From this definition one first gets

Hfl(S, t) =
∑
l

fl(t)Vl(S), bfl(S, t) = −∂Hfl

∂S
· (28)

So that bfl(S, t) can be derived from Hfl(S, t) in the same
way as Beff(S) is obtained from HS(S). Next, recall that
the non-linear part ofHS(S) carries the anisotropy-energy
terms, e.g., HS = −S ·B− 1

2β(S ·n)2 in a uniaxial crystal.
Analogously, Hfl has the form Hfl(S, t) = −S ·bfl(t), with
bfl independent of S, only for linear Vl(S) (bilinear cou-
pling), so that the non-linear part of Vl(S) incorporates

4 Although we omit the symbol of scalar product, the action
of a dyadic AB on a vector C is the standard one: (AB)C ≡
A(B ·C).

fluctuations of the magnetic anisotropy of the spin. This
resembles the scenario encountered for a mechanical oscil-
lator [24], where the portion of the oscillator-environment
coupling quadratic in the coordinate of the test oscillator
yields, instead of a fluctuating force, a fluctuating contri-
bution to its harmonic potential (frequency-type fluctua-
tions). Finally, if Vl(S) only comprises non-linear terms,
such as those occurring in the magneto-elastic coupling
mentioned (Vl ∝

∑
SkS`), no field-type fluctuating terms

emerge and only anisotropy-type fluctuations remain.
We remark in closing that, even for couplings linear

in the spin variables, and hence for bfl(t) independent of
S, the occurrence of the vector product S ∧ bfl in the dy-
namical equations entails that the fluctuating terms enter
in a multiplicative way. This is at variance with the sit-
uation encountered in ordinary mechanical systems [24],
where couplings linear in the system variables lead to ad-
ditive fluctuations (see, e.g., Eq. (20)), whereas multiplica-
tive fluctuating terms only emerge for couplings non-linear
in the system variables (e.g., for Fα(p, q) = −Cαq2). In
the spin-dynamics case, in analogy with the results ob-
tained for mechanical rigid rotators [25], the multiplicative
character of the fluctuations is a consequence of the Pois-
son bracket relations

{
Si, Sj

}
= γ

∑
k εijkSk for angular-

momentum-type dynamical variables, which, even for Fα
linear in S, lead to non-constant

{
A,Fα

}
in equation (19).

In our derivation, this can straightly be traced back by
virtue of the Poisson-bracket formalism employed.

3.4 Statistical properties of the fluctuating terms

In order to determine the statistical properties of the fluc-
tuating sources fl(t), one usually assumes that the envi-
ronment was in thermodynamic equilibrium at the initial
time (recall that no statistical assumption has been ex-
plicitly introduced until this point). This initial state is
customarily chosen in two different ways.

Decoupled initial conditions

The environment variables are distributed at t = t0 ac-
cording to the Boltzmann law associated with the envi-
ronment Hamiltonian alone

P0(P (t0), Q(t0)) = Z−1 exp[−HE(t0)/kBT ], (29)

HE(t0) =
∑
α

1
2
[
Pα(t0)2 + ω2

αQα(t0)2
]
,

where Z is the corresponding partition function. One
then has for the first two moments of the environ-
mental variables 〈Qα(t0)〉 = 〈Pα(t0)〉 = 0, as well as
〈Qα(t0)Qβ(t0)〉 = δαβkBT/ω

2
α, 〈Qα(t0)Pβ(t0)〉 = 0, and

〈Pα(t0)Pβ(t0)〉 = δαβkBT . Thus, the fl(t) (Eq. (24)) are
Gaussian stochastic processes and the relevant averages
over initial states of the environment (ensemble averages)
are given by

〈fl(t)〉 = 0, (30)
〈fl(t)fl′(s)〉 = kBT Kll′(t−s). (31)
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Equation (31) relates the statistical time correlation of the
fluctuating terms fl(t) with the relaxation memory kernels
Kll′(τ) occurring in the dynamical equations (fluctuation-
dissipation relations). Short (long) correlation times of the
fluctuating terms entail short-range (long-range) memory
effects in the relaxation term, and vice versa.

Coupled initial conditions

The environment is assumed to be at t = t0 in thermal
equilibrium in the presence of the system, which is how-
ever taken as fastened in its initial state [20]. Therefore,
the corresponding initial distribution of the environment
variables is

P0(P (t0), Q(t0)) = Z−1 exp[−HSE(t0)/kBT ],

HSE(t0) =
∑
α

1
2

{
Pα(t0)2 + ω2

α

[
Qα(t0) +

ε

ω2
α

Fα(t0)
]2}

.

In this case, the dropped terms depending on the initial
state of the system Kα(t − t0)Fα(t0) (recall the remarks
before Eq. (19)), which for Fα =

∑
l C

l
αVl lead to the

terms
∑
l′ Kll′(t− t0)Vl′(t0), are not omitted but they are

included into an alternative definition of the fluctuating
sources, namely f̃l(t) = fl(t) +

∑
l′ Kll′(t− t0)Vl′(t0). The

statistical properties of these terms, as determined by the
above distribution, are given by expressions identical with
equations (30, 31).

Note that the recourse to the “process” of initial fas-
tening (and subsequent releasing) of the system by an ex-
ternal agency can, to a certain extent, be circumvented on
noting that the concomitant initial statistical properties of
the environment are consistent with the notion of a time-
scale separation between the system and the surrounding
medium, i.e., the latter adjust rapidly to the state of the
former [26].

Note finally that the differences associated with as-
suming decoupled initial conditions or the more phys-
ically motivated coupled initial conditions diminish as
long as the weak-coupling condition is met. Anyhow, with
both types of initial conditions one obtains the same
Langevin equation after a time, measured from t0, of
the order of the width of the memory kernels Kll′(τ),
which is the characteristic time for the “transient” terms∑
l′ Kll′(t− t0)Vl′(t0) to die out.

4 Dynamical equations for couplings
linear-plus-quadratic in the environment
variables

In this Section we shall introduce interactions non-linear
in the environment variables. This is mandatory when
relaxation mechanisms involving more than one environ-
mental normal mode (e.g., multi-phonon or multi-photon
processes) become relevant, as it occurs at sufficiently
high temperatures. When such non-linear couplings are
accounted for, one must resort to approximate methods

to derive a reduced equation of motion for the spin. Here,
we shall tackle the important weak-coupling case by a per-
turbational treatment.

4.1 The spin-environment Hamiltonian: couplings
linear-plus-quadratic in the environment variables

Let us consider the following generalisation of the Hamil-
tonian (10)

H = HS(S) +
∑
α

1
2

{
P 2
α + ω2

α

[
Qα +

ε

ω2
α

Fα(S)
]2}

+
1
2

∑
αβ

[
εQαQβFαβ(S) + kBT

ε2

2ω2
αω

2
β

Fαβ(S)2
]
, (32)

where couplings quadratic in the coordinates of the oscilla-
tors representing the environment have been included. The
part of this interaction depending on the spin variables is
introduced via the functions Fαβ . On the other hand, em-
bodying the additional counter-terms (those proportional
to F 2

αβ), the coupling-induced renormalisation of the en-
ergy of the spin is balanced to order ε2. This renormalisa-
tion results to be explicitly dependent on the temperature
for interactions non-linear in the environment variables
(see below).

4.2 Dynamical equations: general case

Again, for the sake of simplicity and generality, we rewrite
the Hamiltonian (32) as (cf. Eq. (11))

H = H(m)
S (p, q) +

∑
α

1
2
(
P 2
α + ω2

αQ
2
α

)
+ ε
[∑

α

QαFα(p, q) +
1
2

∑
αβ

QαQβFαβ(p, q)
]
, (33)

where H(m)
S augments the system Hamiltonian HS by the

counter-terms (cf. Eq. (12))

H(m)
S = HS +

ε2

2

(∑
α

F 2
α

ω2
α

+ kBT
∑
αβ

F 2
αβ

2ω2
αω

2
β

)
. (34)

The ordinary formalism of the environment of indepen-
dent oscillators [16–20] is not directly applicable when
couplings non-linear in the environment variables are in-
cluded. For instance, QαQβFαβ brings about an indirect
interaction among the oscillators so that these are no
longer independent. Because a reduced equation of mo-
tion for the system cannot be easily derived for an arbi-
trary strength of the coupling, we shall perform a pertur-
bational treatment in the weak-coupling regime by means
of simple extensions of that developed by Cortés, West,
and Lindenberg [22].

In Appendix A the corresponding calculations are de-
tailed for a class of Hamiltonians with quite general non-
linear couplings in both the system and the environment
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variables. The results obtained permit the incorporation
of relaxation mechanisms involving any number of normal
modes into the dynamical equations of the system (un-
der the weak-coupling condition mentioned). In the linear-
plus-quadratic case considered here, we find the following
reduced dynamical equation for any observable of the sys-
tem A(p, q) (cf. Eq. (19))

dA
dt

=
{
A,HS

}
+
∑
α

{
A,Fα

}[
fα(t) +

∫ t

t0

dsKα(t−s)dFα
dt

(s)
]

+
∑
αβ

{
A,Fαβ

}[
fαβ(t) +

∫ t

t0

dsKαβ(t−s)dFαβ
dt

(s)
]
.

(35)

Here, the fluctuating terms fα(t) and the corresponding
kernels Kα(τ) are again given by equations (18), whereas
their counterparts for the quadratic portion of the cou-
pling read

fαβ(t) =
ε

2
Qh
α(t)Qh

β(t), (36)

Kαβ(τ) =
ε2

2
kBT

2ω2
αω

2
β

{
cos[(ωα−ωβ)τ ] + cos[(ωα+ωβ)τ ]

}
,

(37)

where the Qh
α(t) are the environmental proper modes (16).

The treatment leading to equation (35) can be sum-
marised in terms of the driven-oscillator picture discussed
in Section 3. One part of the driving from the system now
depends on the state of the oscillators (cf. Eqs. (14) with
(A.3)); this state is perturbatively replaced by the free evo-
lution terms Qh

α(t), and the back-reaction on the system is
averaged over initial states of the oscillators. This averag-
ing yields the explicit dependence of the kernelsKαβ(τ) on
the temperature (and that of the associated counter-term
1
2

∑
αβ Kαβ(0)F 2

αβ).

4.3 Dynamical equations: the spin-dynamics case

In order to particularise the result (35) to the dynamics
of a classical spin, the additional coupling functions Fαβ
are expressed as

Fαβ(S) =
∑
q

C
q
αβVq(S),

where the general index q is analogous to that intro-
duced in the linear case (Eq. (21)), the coefficients Cqαβ are
the spin-environment coupling constants for the quadratic
part of the interaction, and the terms Vq(S) are certain
functions of the spin variables. To illustrate, for the cou-
pling of S to the lattice vibrations including quadratic
terms in the strain tensor (“two-phonon” processes), the
index q stands for two pairs of Cartesian indices and, e.g.,

Vq → Vij,k` =
∑
mn rijk`,mnSmSn, where the rijk`,mn are

second-order magneto-elastic coefficients.
Then, on merely replacing A(p, q) in equation (35) by

the Cartesian components of the magnetic moment and
using equation (9) to calculate the corresponding Poisson
brackets, one arrives at the following reduced equation of
motion for S (cf. Eq. (27))

dS
dt

= γS ∧ [Beff + bfl(S, t)]

− γS ∧
{∫ t

t0

ds γ
[
Γ̂ (L) + kBT Γ̂

(Q)
]

(S;t,s)
(S ∧Beff) (s)

}
.

(38)

Here, the fluctuating effective field generalises the expres-
sion (23) to

bfl(S, t) = −
[∑

l

fl(t)
∂Vl
∂S

+
∑
q

fq(t)
∂Vq
∂S

]
, (39)

where the fl(t) are given by equation (24) and the fq(t) =∑
αβ C

q
αβfαβ(t) are additional fluctuating terms

fq(t) =
ε

2

∑
αβ

C
q
αβQ

h
α(t)Qh

β(t). (40)

Concerning the relaxation terms, Γ̂ (L) is again given by
equation (25), while the part of the relaxation tensor
associated with the quadratic part of the coupling is
given by

kBT Γ̂
(Q)(S; t, s) =

∑
q,q′

Kqq′(t−s)
∂Vq
∂S

(t)
∂Vq′

∂S
(s) , (41)

where Kqq′(τ) =
∑
αβ C

q
αβC

q′

αβKαβ(τ) or, explicitly

Kqq′(τ) = kBT
ε2

2

∑
αβ

C
q
αβC

q′

αβ

2ω2
αω

2
β

{
cos[(ωα−ωβ)τ ]

+ cos[(ωα+ωβ)τ ]
}
. (42)

Note that equation (38) is of Landau–Lifshitz type
since the derivative dS/dt that would appear in the relax-
ation term has been replaced, within the approximation
used (ε � 1), by its free evolution (conservative) part
dS/dt ' γS∧Beff (see the remarks after Eq. (A.10)). No-
tice also that we have explicitly shown the temperature
dependence of the relaxation term, which is caused by the
quadratic portion of the coupling.

For weak spin-environment interactions being arbi-
trary functions of the spin variables and embodying linear-
plus-quadratic terms in the coordinates of the oscillators
representing the environment, equation (38) is the de-
sired dynamical equation for S. Note that, in quantum-
mechanical language, the term comprising cos(ωατ) in
the memory kernel (26) would correspond to a relax-
ation mechanism (transition) via the emission or ab-
sorption of a vibrational quantum of energy ~ωα. Sim-
ilarly, cos[(ωα + ωβ)τ ] in the kernel (42) would be
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associated with relaxation mechanisms with either the
emission or the absorption of two vibrational quanta,
whereas cos[(ωα − ωβ)τ ] would correspond to the absorp-
tion of one quantum and the emission of a second one
(scattering processes).

Finally, the definition (28) of the fluctuating part of
the energy of the spin can be generalised to

Hfl(S, t) =
∑
l

fl(t)Vl(S) +
∑
q

fq(t)Vq(S), (43)

whence bfl(S, t) = −∂Hfl/∂S, in correspondence with
Beff = −∂HS/∂S. Remarks similar to those made after
equation (28) concerning the structure of Hfl(S, t) for lin-
ear and non-linear (in the spin variables) spin-environment
interactions, and the corresponding nature of the fluctua-
tions (field- and/or anisotropy-type), are in order here.

4.4 Statistical properties of the fluctuating terms

The statistical properties of the fl(t) (Eq. (24)), as de-
termined by the initial distribution (29) of the environ-
ment variables (decoupled initial conditions), are given by
equations (30, 31), whereas those of fq(t) (Eq. (40)) and
their cross-correlations read

〈fq(t)〉 = 0, (44)
〈fl(t)fq(s)〉 = 0, (45)
〈fq(t)fq′(s)〉 = kBT Kqq′(t−s). (46)

In order to obtain equation (44), i.e., centred fluctuating
sources, as well as equation (46), we have assumed that
C
q
αβ ≡ 0 for α = β. If such a restriction is not applied, one

has, e.g., 〈fq(t)〉 6= 0, which represents a non-vanishing av-
erage forcing of the spin. Note however that to retain those
terms must cause no harm since, when the double sums
over oscillators

∑
αβ(·) are transformed into double inte-

grals for (quasi-) continuous distributions of oscillators,
such α = β terms constitute a zero-measure set, whose
contribution can therefore be ignored.

The Gaussian property of the fq(t) can then be
established on the basis that these terms are sums
over a large number of contributions C

q
αβ Q

h
α(t)Qh

β(t)
(Eq. (40)) with mean zero and equivalent statistical prop-
erties (Central Limit Theorem). On the other hand,
equation (46) expresses that the fluctuating sources
fq(t) and the relaxation memory kernels Kqq′(τ) as-
sociated with the quadratic portion of the coupling
also obey fluctuation-dissipation relations. In addition,
the zero cross-correlations of equation (45) are also
fluctuation-dissipation relations involving null kernels (see
Eq. (A.11)).

We finally remark that on assuming coupled initial con-
ditions, without modifying the definitions of the fluctuat-
ing terms, the corrections to equations (30, 44), and to
the relations (31, 45, 46), are of order ε2 and ε3, respec-
tively; these corrections are of order higher than the terms
retained in the weak-coupling approximation used (see
Appendix A).

5 Markovian regime and phenomenological
equations

In this section we shall study the form that the dynamical
equations derived exhibit in the absence of memory effects.
Then, we shall consider some specific spin-environment
interactions, formally obtaining the Langevin equations
discussed in the Introduction.

5.1 Markovian regime

The Markovian regime arises when the relaxation memory
kernels are sharply peaked about τ = 0, the remainder
terms in the memory integrals change slowly enough in
the relevant range, and the kernels enclose a finite non-zero
algebraic area. Under these conditions, one can substitute
the kernels by Dirac deltas and no memory effects occur.

5.1.1 Langevin equations

Let us assume that the memory kernel (26) can be re-
placed by a Dirac delta

Kll′(τ) = 2(λll′/γS)δ(τ), (47)

where the λll′ are damping coefficients related with the
strength and characteristics of the coupling (see below).
Then, on using

∫∞
0

dτ δ(τ)h(τ) = h(0)/2, equation (22)
reduces to the Gilbert-type equation (cf. Eq. (1))

dS
dt

= γS ∧
[
Beff + bfl(S, t)− (γS)−1Λ̂(L) dS

dt

]
, (48)

where Λ̂(L)(S) is a dimensionless second-rank tensor with
elements

Λ(L)
ij (S) =

∑
l,l′

λll′
∂Vl
∂Si

∂Vl′

∂Sj
· (49)

Likewise, on inserting equation (47) in the weak-coupling
equation (27) we get the following Landau–Lifshitz-type
equation (cf. Eq. (2))

dS
dt

= γS ∧ [Beff + bfl(S, t)]− γ

S
S ∧ Λ̂(L) (S ∧Beff) .

(50)

Note that the tensor Λ̂(L), the precursor of which is the
tensor Γ̂ (L) (Eq. (25)) in the memory integrals, is sym-
metrical since λll′ is so (see Eq. (62) below).

On the other hand, the Markovian case of the dynam-
ical equation for couplings linear-plus-quadratic in the
environment coordinates (Eq. (38)) arises when the ad-
ditional memory kernel can also be replaced by a Dirac
delta

Kqq′(τ) = 2(λqq′kBT/γS)δ(τ), (51)
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where we have explicitly shown the temperature depen-
dence of the kernel (42). Then, equation (38) reduces to
the Landau–Lifshitz-type equation

dS
dt

= γS ∧ [Beff + bfl(S, t)]− γ

S
S ∧ Λ̂ (S ∧Beff) , (52)

where bfl(S, t) is now given by equation (39). In the above
equation the relaxation tensor

Λ̂ = Λ̂(L) + kBT Λ̂
(Q), (53)

where

Λ(Q)
ij (S) =

∑
q,q′

λqq′
∂Vq
∂Si

∂Vq′

∂Sj
, (54)

introduces an explicit dependence on the temperature
rooted in the quadratic portion of the coupling.

For a general form of the spin-environment interaction,
due to the occurrence of the tensors Λ̂(L) and Λ̂(Q) in the
above equations, the structure of the relaxation terms de-
viates from the forms proposed by Gilbert and Landau and
Lifshitz. Such deviations can be produced by couplings
non-linear in S, for which Λ̂(L)

ij and Λ̂(Q)
ij depend in general

on the spin variables, but they also emerge when these
tensors are independent of S (e.g., for couplings linear in
S) but they are not proportional to δij . The relaxation is
then anisotropic because, e.g., −S∧ Λ̂(S∧Beff) no longer
points from S to the direction of Beff .

Finally, owing to the fluctuation-dissipation rela-
tions (31, 46), the fluctuating terms corresponding to the
Markovian memory kernels are naturally delta-correlated
in time, so we have the following statistical properties

〈fl(t)〉 = 0, (55)

〈fl(t)fl′(s)〉 =
2λll′
γS

kBTδ(t−s), (56)

and

〈fq(t)〉 = 0, (57)
〈fl(t)fq(s)〉 = 0, (58)

〈fq(t)fq′(s)〉 =
2(λqq′kBT )

γS
kBTδ(t−s). (59)

Notice the double occurrence of kBT in the last relation.

5.1.2 Damping coefficients

On accounting for equations (47, 51), one can calculate
the damping coefficients from the area enclosed by the
memory kernels, namely

λll′

γS
=
∫ ∞

0

dτ Kll′(τ), (60)

λqq′

γS
kBT =

∫ ∞
0

dτ Kqq′(τ). (61)

These areas must be: (i) finite and (ii) different from zero,
for the Markovian approximation to work.

On the other hand, as it could be difficult to find the
kernels exactly in some cases, it is convenient to have al-
ternative means for calculating only the areas required.
Thus, on inserting the definitions of the kernels (26, 42)
into the above integrals and using

∫∞
0 dτ cos(ωτ) = πδ(ω),

we arrive at the following expressions for the damping co-
efficients in terms of the distribution of the normal modes
and spin-environment coupling constants

λll′

γS
= πε2

∑
α

C
l
αC

l′
α

ω2
α

δ(ωα), (62)

λqq′

γS
= π

ε2

2

∑
αβ

C
q
αβC

q′

αβ

2ω2
αω

2
β

×
[
δ(ωα−ωβ) + δ(ωα+ωβ)

]
. (63)

Note that the Dirac deltas in these formulae make sense
under integral signs for (quasi-) continuous distributions
of environmental modes.

5.1.3 Fokker–Planck equations

The Markovian Langevin equations can be employed to
construct the corresponding Fokker–Planck equations gov-
erning the time evolution of the non-equilibrium probabil-
ity distribution of spin orientations P (S, t). The details of
the derivations of the Fokker–Planck equations associated
with the Landau–Lifshitz-type equations (50, 52) are given
in Appendix B. For the latter we get

∂P

∂t
=

− ∂

∂S
·
{
γS∧Beff −

γ

S
S ∧ Λ̂

[
S ∧

(
Beff − kBT

∂

∂S

)]}
P,

(64)

where ∂
∂S · stands for the divergence operator ( ∂

∂S · J =∑
i
∂Ji
∂Si

). Similarly, the Fokker–Planck equation corre-
sponding to equation (50) is analogous to equation (64)
with Λ̂ = Λ̂(L) + kBT Λ̂

(Q) replaced by Λ̂(L).

Stationary solution

By using Beff = −∂HS/∂S and ∂
∂S ·

(
S ∧ BeffP0

)
= 0,

one readily demonstrates that the Boltzmann distribu-
tion, P0(S) ∝ exp[−HS(S)/kBT ], is a stationary solution
of these Fokker–Planck equations. This entails that under
external stationary conditions P (S, t) t→∞−→ P0(S), that is,
the spin eventually reaches the thermal equilibrium dis-
tribution of orientations. Note that this is a consequence
of the formalism employed, instead of a constrain imposed
separately, as it is usually done in the (semi-) phenomeno-
logical approaches.
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Note nevertheless that we have only proved the ther-
mal equilibration for equations (50, 52), i.e., in the weak-
coupling regime. In this connection, it is to be recalled
that, inasmuch as the spin-environment coupling Hamilto-
nians themselves are commonly obtained via perturbation
theory (so they are “small” in some sense), the study of
the arbitrary-coupling case of such Hamiltonians is mainly
of an academic interest.

5.2 Brown–Kubo–Hashitsume model

Let us first consider the case of couplings linear in the
environment coordinates. Then, if Vl(S) is linear in S, both
the relaxation tensor Λ̂(L) and the fluctuating field bfl are
independent of S (see Eqs. (49, 23)). From the statistical
properties (55, 56) of the fluctuating sources fl(t), one
then gets

〈bfl,i(t)〉 = 0, 〈bfl,i(t)bfl,j(s)〉 =
2Λ(L)

ij

γS
kBTδ(t−s),

where the last result establishes the relation between the
structure of the correlations among the components of
bfl(t) and the form of the relaxation tensor Λ̂(L) 5. The
corresponding result by Jayannavar [15] comprised an un-
correlated bfl(t) (a diagonal Λ(L)

ij in our formulation) due
to special bilinear interaction that he considered (recall
the discussion after Eq. (10)).

On the other hand, if the spin-environment interac-
tion yields uncorrelated and isotropic fluctuations (Λ(L)

ij =
λδij), the Langevin equations (48, 50) reduce, respectively,
to the stochastic Gilbert (Eq. (1)) and Landau–Lifshitz
(Eq. (2)) equations. Thus, the phenomenological Brown–
Kubo–Hashitsume model [1,2] is formally obtained.

Note finally that these results also hold when cou-
plings quadratic in the environment variables are included
(Eq. (52)), with the difference that the relaxation terms
(effective damping coefficients) are then explicitly depen-
dent on the temperature.

5.3 Garanin, Ishchenko, and Panina model

We shall now show that the weak-coupling Landau–
Lifshitz-type equations (50, 52), formally reduce to
the Langevin equation (4) of Garanin, Ishchenko, and
Panina when the spin-environment interaction includes up
to quadratic terms in the spin variables. In this case, the
coupling functions Vl(S) and Vq(S) can be written as

Vl(S) =
∑
i

vl,iSi +
1
2

∑
ij

wl,ijSiSj, (65)

Vq(S) =
∑
i

vq,iSi +
1
2

∑
ij

wq,ijSiSj , (66)

5 Note that for bfl(S, t) depending on S, one cannot merely
employ equations (55, 56) to derive the statistical properties
of bfl(S, t), since S(t) and fl(t) are not independent.

where the constants vl,i, wl,ij , vq,i, and wq,ij incorporate
the symmetry of the interaction. Then, the fluctuating
effective field (39) can be cast into the form (cf. Eq. (4))

bfl(S, t) = b(t) + k̂(t)S,

with the following expressions for the fluctuating sources
b(t) and k̂(t) in terms of the coupling constants

bi(t) = −
[∑

l

fl(t)vl,i +
∑
q

fq(t)vq,i
]
,

kij(t) = −
[∑

l

fl(t)wl,ij +
∑
q

fq(t)wq,ij
]
.

As b(t) does not depend on S, it can be interpreted as a
fluctuating ordinary field (the bfl(t) of the previous sub-
section). The fluctuations of k̂(t), however, do not enter in
this way, since they occur via

∑
j kij(t)Sj , but they pro-

duce fluctuations of the magnetic-anisotropy potential of
the spin, both of the direction of the anisotropy axes and of
the magnitudes of the anisotropy constants. This is neatly
perceived on considering that the fluctuating part of the
energy of the spin (43), which gives bfl(S, t) = −∂Hfl/∂S,
takes in this case the form

Hfl(S, t) = −S · b(t)− 1
2
S · k̂(t)S.

In the Markovian regime, the auto- and cross-
correlations of b(t) and k̂(t) can be obtained by dint of
equations (56, 58, 59). Such correlations can be cast into
the form proposed by Garanin, Ishchenko, and Panina
(Eq. (3))

〈bi(t)bj(s)〉 =
2λij
γS

kBTδ(t−s),

〈bi(t)kjk(s)〉 =
2λi,jk
γS

kBTδ(t−s),

〈kik(t)kj`(s)〉 =
2λik,j`
γS

kBTδ(t−s),

with the following expressions for the correlation coeffi-
cients

λij =
∑
l,l′

λll′vl,ivl′,j + kBT
∑
q,q′

λqq′vq,ivq′,j ,

λi,jk =
∑
l,l′

λll′vl,iwl′,jk + kBT
∑
q,q′

λqq′vq,iwq′,jk,

λik,j` =
∑
l,l′

λll′wl,ikwl′,j` + kBT
∑
q,q′

λqq′wq,ikwq′,j`.

Concerning the relaxation term, the tensor Λ̂ = Λ̂(L) +
kBT Λ̂

(Q) (Eq. (53)) associated with the coupling func-
tions (65, 66), is given by

Λij =
∑
l,l′

λll′
(
vl,i +

∑
k

wl,ikSk
)(
vl′,j +

∑
`

wl′,j`S`
)

+ kBT
∑
q,q′

λqq′
(
vq,i +

∑
k

wq,ikSk
)(
vq′,j +

∑
`

wq′,j`S`
)
.
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However, this expression can be written in terms of the
above correlation coefficients as

Λij = λij +
∑
k

(λi,jk + λj,ik)Sk +
∑
k`

λik,j`SkS`,

which is identical with the relation (5) between the ten-
sor Ĝ in equation (4) and the correlation coefficients in
equation (3).

Therefore, we find that when the spin-environment
coupling includes up to quadratic terms in the spin
variables, the structures of the fluctuating effective field
bfl(S, t) and of the relaxation term R = γ

SS ∧ Λ̂(S ∧
Beff) in the Landau–Lifshitz-type equation (52), as well
as the relation between them, are identical with those of
the corresponding terms in the Langevin equation (4) of
Garanin, Ishchenko, and Panina. Naturally, the Fokker–
Planck equation (64), then reduces to that constructed by
them [12].

6 Summary and discussion

Starting from a Hamiltonian description, reduced equa-
tions of motion for a classical spin interacting with the
surrounding medium, have been derived. The oscillator-
bath representation of the environment has been employed
and couplings depending arbitrarily on the spin variables
and being linear or linear-plus-quadratic in the environ-
ment variables, have been considered (higher-order non-
linearities in the environment variables can be incorpo-
rated by the treatment of Appendix A).

The dynamical equations obtained (Eqs. (22, 27, 38))
have the structure of generalised Langevin equations
with fluctuating terms γS ∧ bfl(S, t) (associated with
the modulation by the proper modes of the environ-
ment), and relaxation terms (corresponding to the back-
reaction on the spin of its previous action on the
surrounding medium) obeying fluctuation-dissipation re-
lations (Eqs. (31, 45, 46)). For couplings non-linear in
the spin variables, the fluctuating effective field bfl(S, t)
(Eqs. (23, 39)) depends in general on S, so that it can
incorporate fluctuations of the magnetic anisotropy of the
spin.

In the Markovian approach, we have obtained general-
isations of the phenomenological Langevin equations with
the general form dS/dt = γS∧ [Beff +bfl(S, t)]−R, where
for couplings linear in the environment coordinates the
relaxation term reads R = 1

SS ∧ Λ̂(L)(dS/dt) (Gilbert-
type; Eq. (48)) and R = γ

SS ∧ Λ̂(L)(S ∧ Beff) for weak
coupling (Landau–Lifshitz-type; Eq. (50)). When interac-
tions quadratic in the environment variables are accounted
for, the tensor Λ̂(L) in the weak-coupling relaxation term
results to be augmented to Λ̂ = Λ̂(L) + kBT Λ̂

(Q), incor-
porating an explicit dependence of the effective damping
coefficients on the temperature (Eq. (52)). Finally, when
the spin-environment interaction consists of linear and
quadratic terms in the spin variables, the weak-coupling

Landau–Lifshitz-type equations obtained and the corre-
sponding Fokker–Planck equations, formally reduce to
those of Garanin, Ishchenko, and Panina.

Note however that the presented derivation of the
equations of Garanin, Ishchenko, and Panina and, simi-
larly, the previous derivations [13–15,21] of the equations
occurring in the Brown–Kubo–Hashitsume stochastic
model, are formal in the sense that one must still
investigate specific realizations of the spin-plus-
environment whole system, and then prove that the
assumptions employed (mainly that of Markovian behav-
ior) are at least approximately met. A paradigmatic case
where this does not occur is that of a magneto-elastic
coupling of the spin to the lattice vibrations (in two or
three dimensions) linear in the corresponding normal
modes [27,28]. The associated memory kernel crosses
zero, changes it sign, and tends to zero from negative
values as τ → ∞, enclosing a zero algebraic area. One
then gets identically zero λll′ by equation (60) and hence a
zero tensor Λ̂(L) by equation (49). Therefore, on replacing
such a kernel by a Dirac delta, one looses the relaxational
effects associated with the portion of the coupling linear
in the environment variables (“one-phonon” processes),
which are dominant at sufficiently low temperatures.

On the other hand, we have considered the classical
regime of the environment and the spin. A classical de-
scription of the environment is adequate, e.g., for the cou-
pling to low-frequency (~ωα/kBT � 1) normal modes,
while, for instance, the magnetic moment of a nanomet-
ric particle (S ∼ 103–105 µB) behaves, except for very low
temperatures, as a classical spin. In addition, the equa-
tions derived might also serve as a limit description of
the semi-classical dynamics of molecular magnetic clus-
ters with high spin (>∼ 10) in their ground state. Finally,
the Hamiltonian formalism employed could be suitable to
attempt the generalisation of some of the results presented
to the quantum case.

The author is indebted to D.A. Garanin for valuable advice at
critical stages of this work. Financial support from the Swedish
Natural Science Research Council (NFR) is gratefully acknowl-
edged.

Appendix A: Equations of motion for couplings
non-linear in the environment variables

In this appendix we shall derive a reduced equation of mo-
tion for any dynamical variable A(p, q) whose time evolu-
tion is determined by the Hamiltonian (33), by means of
a perturbational expansion in the coupling parameter ε.
Nevertheless, we shall first study the weak-coupling dy-
namics associated with a larger class of Hamiltonians of
the form

H = H(m)
S +

∑
α

1
2
(
P 2
α + ω2

αQ
2
α

)
+ ε

∑
N

BN(Q)FN (p, q),

(A.1)
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where the coupling terms BN(Q) are arbitrary functions of
the environment coordinates Q and N stands for a general
index, which can run, e.g., over single oscillator indices,
pairs, triplets, etc. (α, αβ, αβγ, . . . ). On the other hand,
the modified system Hamiltonian H(m)

S augments the sys-
tem Hamiltonian HS by appropriate counter-terms, which
will be determined below.

We shall first derive the reduced dynamical equations
associated with the Hamiltonian (A.1), so that one could
incorporate the effects of relaxation mechanisms involving
any number of environmental normal modes. This will be
done by a perturbational treatment, which is an extension
of that carried out by Cortés, West, and Lindenberg [22] to
deal with a system-environment coupling linear in the sys-
tem coordinate (the case FN (p, q) ∝ q of the Hamiltonian
(A.1)), but otherwise arbitrary in the environment coor-
dinates (Brun [29] also treated rather general non-bilinear
interactions by perturbation theory). Eventually, we shall
particularise the results obtained to the Hamiltonian (33),
which is recovered when:

1. N only runs over single oscillator indices α and pairs
αβ.

2. The corresponding coupling terms are Bα(Q) = Qα
and Bαβ(Q) = 1

2QαQβ.

The coupled dynamical equations for A(p, q) and the
environment variables associated with the Hamiltonian
(A.1) are (cf. Eqs. (13, 14))

dA
dt

=
{
A,H(m)

S

}
+ ε

∑
N

BN(Q)
{
A,FN

}
, (A.2)

dQα
dt

= Pα,
dPα
dt

= −ω2
αQα − ε

∑
N

BNα (Q)FN , (A.3)

where BNα = ∂BN/∂Qα. Equations (A.3) can formally
be integrated, yielding an equation akin to equation (15)
with Fα(s) →

∑
N BNα [Q(s)]FN (s), where FN (s) =

FN [p(s), q(s)]. On integrating by parts in such an equation
one gets (cf. Eq. (17))

Qα(t) = Qh
α(t)− ε

∑
N

[
DN
α (Q; t, s)FN (s)

]s=t
s=t0

+ ε

∫ t

t0

ds
∑
N

DN
α (Q; t, s)

dFN
dt

(s), (A.4)

where Qh
α(t) is the familiar solution (16) for the free os-

cillator and we have introduced the indefinite integral

DN
α (Q; t, s) =

1
ωα

∫ s

ds′ sin[ωα(t−s′)]BNα [Q(s′)]. (A.5)

Recall that on writing Qα(t) in the form (A.4) by an in-
tegration by parts, permits the separation of the Hamil-
tonian (renormalisation) and relaxational terms. However,
equation (A.4) gives Qα(t) in implicit form, since this also
appears on the right-hand side via BNα (Q) (Eq. (A.4) is
an explicit solution only in the linear BN(Q) case of the
Hamiltonian (11)).

For weak system-environment interactions, we shall
solve equation (A.4) for Qα(t) perturbatively in ε. How-
ever, as pointed out in reference [22], in order to get
eventually a thermodynamically consistent description,
the expansion cannot be uniform in ε. If one keeps
fluctuating terms up to order εk, the relaxation terms
must be retained up to order ε2k, in order to ob-
tain proper fluctuation-dissipation relations (see, e.g.,
Eqs. (24, 26, 31)).

The ε-expansion of Qα(t) reads

Qα(t) = Qh
α(t) + ε δQα(t) + . . . ,

where ε δQα(t) is given by the second plus third terms on
the right-hand side of equation (A.4) whenQh (the zeroth-
order term) is substituted for Q in DN

α (Q; t, s) (that is, we
iterate Eq. (A.4) into itself). The corresponding expansion
of the coupling functions is given by

εBN(Q) = εBN(Qh) + ε2
∑
α

BNα (Qh)δQα + . . . , (A.6)

which enters into equation (A.2). The term

fN(t) = εBN [Qh(t)], (A.7)

per analogy with fα(t) = εQh
α(t) (Eq. (18)), is inter-

preted as the lowest order fluctuation. Following the pro-
gram of reference [22], we shall retain fluctuations only
to this order. On the other hand, in order to ensure
〈fN(t)〉 = 0, where the angular brackets denote average
over initial states of the oscillators, one could assume
that, e.g., at least one coordinate enters in BN(Q) an
odd number of times [22]. Nevertheless, as discussed after
equations (44, 45, 46), such a restriction is not needed
when the frequency spectrum of the oscillators is suffi-
ciently dense.

Concerning the back-reaction part on introducing

KN,M(t, s) = ε2
〈∑

α

BNα [Qh(t)]DM
α (Qh; t, s)

〉
, (A.8)

δKN,M(t, s) = ε2
∑
α

BNα [Qh(t)]DM
α (Qh; t, s)−KN,M(t, s),

the second term in the expansion (A.6) can be decom-
posed as

ε2
∑
α

BNα (Qh)δQα

= −
[∑
M

[
KN,M(t, s) + δKN,M(t, s)

]
FM (s)

]s=t
s=t0

+
∫ t

t0

ds
∑
M

[
KN,M(t, s) + δKN,M(t, s)

] dFM
dt

(s).

Each kernel KN,M gives a different type of contribu-
tion whereas the contribution of δKN,M can be inter-
preted as fluctuations around the former [22]. As these
fluctuations are of order higher (ε2) than the fluctua-
tions that we are retaining in the present treatment,
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the terms δKN,M will henceforth be omitted. On the other
hand, the terms

∑
M KN,M(t, t0)FM (t0) in ε2

∑
α BNα δQα

will also be ignored as they are the generalisation of
those terms that give a transient in the response (see
Sect. 3; recall however that they could be incorporated
into an alternative definition of the fluctuating sources
but, as they are of order ε2, they would anyhow be ig-
nored). Finally, the parallel terms −

∑
M KN,M(t, t)FM (t)

give the Hamiltonian contributions. In order to prove
this, note first that, since KN,M(t, s) comprises equilib-
rium averages (Eq. (A.8)), it depends on (t− s) and,
hence, KN,M(t, t) is independent of t. By the same
reasoning one can demonstrate the symmetry property
KN,M = KM,N (we shall anyway verify explicitly these
two results for the Hamiltonian (33)). Then, by using
the product rule of the Poisson bracket,

{
A,BC

}
={

A,B
}
C +

{
A,C

}
B, one finds that the contribution

originating from −
∑
M KN,M(t, t)FM (t) in the equation

for A(p, q), is given by −
∑
NM KN,M(0)

{
A,FN

}
FM ={

A,− 1
2

∑
NM KN,M(0)FNFM

}
, which is indeed derivable

from a (time-independent) Hamiltonian. This term is as-
sociated with the coupling-induced renormalisation of the
energy of the system and is balanced by the counter-terms
incorporated into H(m)

S , now explicitly identified as (cf.
Eq. (12))

H(m)
S = HS +

1
2

∑
NM

KN,M(0)FNFM . (A.9)

On collecting the terms whose retention has hitherto
been argued and introducing them into equation (A.2),
one finally gets the (approximate) reduced equation of mo-
tion for any dynamical variable A(p, q) (cf. Eq. (19))

dA
dt

=
{
A,HS

}
+
∑
N

{
A,FN

}[
fN (t) +

∫ t

t0

ds
∑
M

KN,M(t−s)dFM
dt

(s)
]
.

(A.10)

In addition, within the approximation used (fluctuating
and relaxation terms to order ε and ε2, respectively),
one can substitute dFM/dt in the memory integral by
its conservative part dFM/dt '

{
FM ,HS

}
. On the other

hand, one can establish fluctuation-dissipation relations
by means of arguments parallel to those presented in ref-
erence [22].

To conclude, we shall particularise these results to the
linear-plus-quadratic couplings of the Hamiltonian (33).
This is recovered when N runs over single oscillator in-
dices α, with Bα = Qα, and pairs αβ, with Bαβ =
1
2QαQβ. Then, the fluctuating terms fN (t) = εBN [Qh(t)]
(Eq. (A.7)) are given by fα(t) = εQh

α(t) (Eq. (18)) and
fαβ(t) = ε

2Q
h
α(t)Qh

β(t) (Eq. (36)). On the other hand,
by inserting the derivatives Bαγ = ∂Bα/∂Qγ = δαγ and
Bαβγ = ∂Bαβ/∂Qγ = 1

2 (δαγQβ+δβγQα) in equation (A.5),

the functions DN
γ (Q; t, s) emerge in the form (N = α, αβ)

Dα
γ (Q; t, s) =

δαγ
ω2
α

cos[ωα(t−s)],

Dαβ
γ (Q; t, s) =

1
ωγ

∫ s

ds′ sin[ωγ(t−s′)]

×1
2

[δαγQβ(s′) + δβγQα(s′)].

Therefore, on taking the averages in equation (A.8) with
respect to the distribution (29) (decoupled initial con-
ditions) by using 〈Qh

α(t)〉 = 0 and 〈Qh
α(t)Qh

β(s)〉 =
δαβ(kBT/ω

2
α) cos[ωα(t−s)], we get for the kernels KN,M

Kα,β(τ) = δαβ
ε2

ω2
α

cos(ωατ),

Kα,βγ(τ) = Kαβ,γ(τ) = 0, (A.11)

Kαβ,γδ(τ) =
1
2

(δαγδβδ + δαδδβγ)
ε2

2
kBT

2ω2
αω

2
β

×
{

cos[(ωα − ωβ)τ ] + cos[(ωα + ωβ)τ ]
}
.

These kernels satisfy the properties mentioned above: they
depend on τ = t−s and are symmetrical with respect to
the indices separated by commas, which correspond to the
general indices N,M .

On introducing all these results in equation (A.10),
the resulting dynamical equation for A(p, q) is given by
equation (35), where, for the sake of simplicity, we have
introduced the kernels Kα(τ) and Kαβ(τ), which are de-
fined in terms of the above kernels by

Kα,β(τ) = δαβKα(τ),

Kαβ,γδ(τ) =
1
2

(δαγδβδ + δαδδβγ)Kαβ(τ).

Besides, on explicitly writing the counter-term of
equation (A.9) in this linear-plus-quadratic case, one ar-
rives at equation (34).

Note finally that, owing to Bαγ (Qh)Dβ
γ (Qh; t, s) does

not depend on Qh, the kernel Kα(τ) is not affected by
the averaging procedure, whereas this renders Kαβ(τ) ex-
plicitly dependent on the temperature. In this connection,
we remark that the modifications of this last kernel, ob-
tained when one assumes coupled initial conditions, begin
at order ε3.

Appendix B: Derivation of the Fokker–Planck
equations

In this appendix we shall derive the Fokker–Planck equa-
tions associated with the Landau–Lifshitz-type equa-
tions (50, 52). On examining the statistical proper-
ties (56, 59), one realizes that Langevin equations where
the noise terms are not statistically independent need to
be considered.
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Let us consider the general system of Langevin
equations

dyi
dt

= Ai(y, t) +
∑
k

Bik(y, t)Lk(t), (B.1)

where i = 1, . . . , n, y = (y1, . . . , yn), and k runs over
a given set of indices. The Langevin sources Lk(t) are
Gaussian stochastic processes satisfying

〈Lk(t)〉 = 0, 〈Lk(t)L`(s)〉 = 2Dk`δ(t−s), (B.2)

where the constant matrix Dk` accounts for the possible
correlations among the Lk(t).

The time evolution of P (y, t), the non-equilibrium
probability distribution for y at time t, is given by the
Fokker–Planck equation

∂P

∂t
= −

∑
i

∂

∂yi

[(
Ai +

∑
jk`

Bj`D`k
∂Bik
∂yj

)
P

]

+
∑
ij

∂2

∂yi∂yj

[(∑
k`

BikDk`Bj`

)
P

]
,

where the Stratonovich stochastic calculus [30] has been
used to treat the (in general) multiplicative fluctuating
terms in the Langevin equations (B.1). On taking the yj-
derivatives of the second term on the right-hand side, one
alternatively gets the Fokker–Planck equation in the form
of a continuity equation for the probability distribution,
namely

∂P

∂t
= −

∑
i

∂

∂yi

{ [
Ai −

∑
k`

BikDk`

(∑
j

∂Bj`
∂yj

)
−
∑
jk`

BikDk`Bj`
∂

∂yj

]
P

}
. (B.3)

The Stratonovich calculus has been chosen on the ba-
sis of two points. On the one hand, the results in the
context of this calculus coincide with those formally ob-
tained in the limit of small but finite width of the auto-
correlation functions of the fluctuating sources, which is
precisely the way one takes the Markovian limit. On the
other hand, the generalised Langevin equations obtained
in this article are indeed dynamical equations to which a
stochastic interpretation has been added. Besides, owing
to 0 = S · (dS/dt) = 1

2d(S2)/dt, the time evolution that
they determine rigorously conserve the length of the spin.
Nevertheless, when passing from ordinary to stochastic
differential equations, specific rules of calculus (integra-
tion and differentiation) are required. In the context of
the Stratonovich calculus, such rules are formally iden-
tical with those of the ordinary calculus, so that equa-
tions (48, 50, 52) also yield d(S2)/dt = 0. However, when
using the rules of differentiation of the Itô calculus, one
finds that those equations do not conserve the length of S.

Now, on considering the Landau–Lifshitz-type
equation (50), supplemented by the statistical proper-

ties (55, 56), the substitutions

(k, `) = (l, l′), (y1, y2, y3) = (Sx, Sy, Sz),

Ll(t) = fl(t), Dll′ =
λll′

γS
kBT,

Ai =
[
γS ∧Beff −

γ

S
S ∧ Λ̂(L) (S ∧Beff)

]
i
,

Bil = −γ
∑
rs

εirsSr
∂Vl
∂Ss

,

cast them into the form of the general system of Langevin
equations (B.1) supplemented by equations (B.2). There-
fore, on using

∂Bil
∂Sj

= −γ
(∑

s

εijs
∂Vl
∂Ss

+
∑
rs

εirsSr
∂2Vl

∂Sj∂Ss

)
,

one finds that
∑
j ∂Bjl/∂Sj ≡ 0, ∀l, due to εjjs = 0 and

the vanishing of the contraction of symmetrical tensors
with antisymmetrical tensors. Consequently, the second
term on the right-hand side of the general Fokker–Planck
equation (B.3) vanishes identically in this case. For the
third term, by repeated use of (J ∧ J′)i =

∑
rs εirsJrJ

′
s

and recalling the definition (49), we get

−
∑
jll′

BilDll′Bjl′
∂P

∂Sj
=
γ

S
kBT

[
S ∧ Λ̂(L)

(
S ∧ ∂P

∂S

)]
i

.

On introducing these results into equation (B.3) one
eventually arrives at a Fokker–Planck equation analogous
to (64) with Λ̂ replaced by Λ̂(L). In addition, by means
of similar considerations and allowing the index in the
Langevin sources Lk(t) to run also over the indices q, the
Landau–Lifshitz-type equation (52) leads to the Fokker–
Planck equation (64).
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